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In this paper, the local evaluation of the derivative of a determinant of a l-matrix 1s con- 
sidered. The entries of a I-matrix are scalar polynomials, of finite degree, in the indepcndcnt 
variable 1. The existing methods with O(W) operation counts, developed for non-singular 
matrIces, are reviewed, and extended, where possible, to singular matrices. An alternative 
approach, similar in nature to the previous methods, based on direct selection of the necessary 
matrix entries, is suggested. A general expression, valid at both singular and non-singular 
points, is derived and then the simplifications to be found in special cases are discussed, and 
applications where the algorithms might be. useful are given. c 1986 Academic Press, Inc. 

This paper is concerned with evaluating the derivative of the determinant of 
square matrices whose elements are polynomials in the relevant parameter. 
Matrices of this type may be represented in the form of a scalar polynomial with 
matrix coefficients, 

where the are square matrices with complex entries, I is a scalar, and p is the 
degree of thl polynomial matrix. These matrices are often referred to as liar~2bda 

rices [ 1; Chap. 6, 21. The lambda matrix is regular if B, is invertible, and monk 
o = I, the identity matrix. Matrices of this type arise in the analysis of dynamical 

systems 123, the stability of fluid flows [3], and in bifurcation theory Cd]. 
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The eigenvalue problem associated with (1) is to lind the roots of the deter- 
minant, d(l), of D,(n) 

d(L) = ID,(A)1 =O. (2) 

When p = 1, the expression (1) is the form for a linear eigenvalue problem, and 
when p > 1 it is the form for a non-linear, in the parameter, eigenvalue problem. If the 
order of the matrix is YV, then the determinantal equation (2) results in a scalar 
polynomial of degree <pN. If D, is regular the degree of the resulting scalar 
polynomial is exactly pN. Corresponding to each latent root, Jk, of (2) there is a 
right and left eigenvector xk and yk of D&n,) which satisfy 

D&J * xk = 0 and yk”. D,&) = OH (3) 

where the superscript H denotes complex conjugate transpose. 
A review of numerical methods for eigenvalue problems of this type is given by 

Lancaster [S]. Applications of these methods, as well as some recent developments, 
can be found in [6], and [7]. 

The major reason for this work was the necessity to evaluate the derivative of a 
determinant at points where the determinant is zero with a reasonable operation 
count, say 0(N3) operations. The available methods for evaluating the derivative of 
a determinant (which will be discussed in the next section) had been developed for 
evaluation at non-singular points. Consequently, we developed a simple method for 
the expressed purpose of efficiently evaluating the derivative of a determinant at 
singular points. It was successfully used in a statistical analysis of the transition to 
turbulence in [S]. It was then generalized to include non-singular points as well, 
and applied to various problems. At non-singular points the approach is similar to 
other proposed methods. 

Algorithms, of this type, for the local evaluation of the derivative of a deter- 
minant at non-singular points are useful as a basis for a Newton iteration scheme to 
find the eigenvalues of a lambda matrix. When inverting Fourier or Laplace trans- 
forms with matrix integrands, using residue theory, the poles occur at the zeros of a 
determinant. Evaluation of each residue requires the derivative of the determinant 
at singular points. The sum of these residues provides the necessary inversion of the 
integrals. 

In Section 2, known methods for evaluating the derivative of a determinant are 
reviewed. These methods are extended where possible to the evaluation at singular 
points. Then, in Section 3 our alternative approach is presented. In Section 4 the 
special case of the first derivative at singular points is considered with applications. 
Then in Section 5 the special case of the first and second derivative at non-singular 
points, with applications, is considered. 
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2. REVIEW OF EXISTING METHODS 

The global derivative of a determinant can be constructed in the ~o~owi~g way. 
efine D&I-) as the jth column of D,(n), and “)(A) as the derivative of 

with respect to /2. Then, if N is the order of the m&-ix 
,V”l 

II,( the derivative of the 
determinant of D,(A) can be expressed as 

$A(.q=d”‘(i)= f Ai 
j=l 

where A,(,?) is a determinant whose jth column is *j(‘)(3V) and the remaining 
columns are those of D,(n). With this expression, th valuation of the derivative 
would require the ealuation of N determinants for each point i,, resulting in an 
operation count of order N4. 

IHowever for the local evaluation of the derivative of a determinant methods with 
an operation count of O(N3) have been developed. The first of these methods is the 
method of Lancaster based on the trace theorem [2, p. 99-J. The essential result of 
this theorem is that the local derivative of a determinant, at points where A(,i,) # 
can be expressed as 

A(‘)(~,)=A(~,).Trace(D~“(~,)D(‘)(~,)) (5) 

where Trace(A) = CTZ 1 ajj. The major amount of work in evaluating (5) is the 
O(N3) operations required to form the inverse of DJ&). The remaining work is in 
construcing DC’)(&), which is of O(N2) operations, and forming the trace of the 
product which requires and additional N2 operations. However the Trace{ 
wh[ere M = DP’D(l) can be constructed with greater efficiency (although the 

ration count is still O(N3)) by using the LU decomposition of M. Then sol 
M = D(l) in the usual way. UM is constructed by forward substitution with 

is constructed by back substitution with U. ith this procedure the lower 
part of M only is computed. 

When A(l,) = 0, this expression may be cast in a different form, 

A(‘)(&) = Trace(cof(D(&)) ($1 

where cof(A) denotes the cofactor matrix of A. The construction of a cofactor 
matrix for a singular matrix may be performed in a number of ways. If the 
singularity is due to a distinct eigenvalue, and the associated left and right eigenvec- 
tsrs are available, they can be used to construct the cofactor matrix. An example of 
this approach, for computing the cofactor matrix of a singular matrix, is give 
Section 4. Otherwise elementary operations may be used to construct a zero 
and column, then the cofactor matrix is a single entry matrix which is pre- 
post-multiplied by the matrices containing the elementary operations. Lancaster has 
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also extended this result to the second derivative at non-singular point. The result, 
from [2, p. 841, is 

d(2)(1,)=d(jlk).Trace{D~1(1,)D(2)(~,)-(D-1(;lk))D(1)(~k))2} 

+ kw&Y4&)~2. (7) 

Evaluation of this expression will require, in addition to the evaluation of d”‘(1,), 
the formation of the product D-l(&) D(l)(&), requiring N3 operations, and the 
formation of DC2) and the summing of the trace, both of which require O(N2) 
operations. The expressions (5), and (7) were used by Lancaster to construct two 
efficient Newton based iteration schemes for finding the eigenvalues of lambda 
matrices. The extension of the result (7) to singular points is not, however, obvious. 

Another approach has been suggested by Kublanovskaya [9]. It is based on the 
QR algorithm. The essence of the method is as follows. The matrix D,(n) is decom- 
posed into the product of a unitary matrix Q and an upper triangular matrix R, 

D&U = Q(A). R(A) 

where Q(1) satisfies 
QH.Q=I. 

Taking the determinant of Q to be unity, the determinant of (8) is 

(8) 

(9) 

d(A)= fi r,?(n) (10) 
J=l 

with derivative 

but dividing (11) by (10) 

(11) 

(12) 

It remains now to find an expression for dr,,/dA. Taking the derivative of (8), 
premultiplying by QH and post-multiplying by R - ’ results in 

Q”D,“‘@) R-‘(J)= QH(n) Q”‘(1) + R(i)(J) R-‘(A). (13) 

However, from (9), the product QHQ(‘) is skew-symmetric. Therefore the trace of 
(13) results in 

(14) 
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This may then be used in (12) to evaluate the derivative. This is tne essence of 
~~bla~ovskaya’s approach. There are additional details and the reader is referre 
to her paper [9] for complete details. The operation count for t 

minated by the orthogonal decomposition in (8). It requires O(N3) 
owever there is the additional work of forming the trace of the 

product in (14), which requires O(N3) operators. uhe [6] gives a description of 
this method, as well as a variation of it, as a basis for Newto 
ing the roots of lambda matrices. Although the approach of 
potentially interesting it has the drawback that it fails when 
no analogy to this method for singular D,(n) has been 
singular, the orthogonal decomposition may not be uniqu 
ferentiable with respect to 1”. 

3. AN ALTERNATIVE APPROACH FOR THE DERIVATIVE 

An alternative approach for the local evaluation of the derivative of a deter- 
minant may be constructed. This approach is based on expanding the lambda 
matrix in a Taylor series about the desired point, 

D,(i) = i F,(/Z - &Jn. (19 
?I=0 

Wo approximation has been made, merely a recasting, since the degree is finite. T 
matrices F, are the Taylor matrices 

‘“‘(A+) 
n! 

When the matrix is cast in this form, the determinant of the matrix will result in a 
scalar polynomial in (1” - a,), 

A(l) = do + d1(;l- Ak) + d# - ,q2 + ‘.. (17) 

where the d, are the scalars, 

do= A(&) 

d, = A”‘(&) 

d, = &4’*‘(,?,) 

etc.. Therefore, the object is to arrange the matrices F, and d (and Fz, etc. for 
derivatives higher than the first) in a convenient form such that the scalars dj 
be obtained in a simple manner. Here a general procedure for finding the scalar d, 

581:65/l-8 
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will be given, and in the subsequent sections the special case of singular and non- 
singular points and higher derivatives will be considered. 

For the first derivative only the matrices F, and F, are necessary. The matrix 
D,(l) is operated on by elementary operations, represented by the matrices E, and 
E 23 

EID,(n) E2=ElFOE2+E1FIE2(~-&)+ . . . . (19) 

The matrices El and E, are chosen such that F,, is brought to a diagonal form, 

A = E, F,E2 = 

all 0 . . . 0 
0 az2 .*. 0 
. . . . . . . . 0 0 : ... 

aNN 

(20) 

with the same operations applied to F,. Defining B=E,FIE2, then 

E, D,(l) E, = A + B(;1- I,) + . . . . (21) 

If A(&) = 0, the matrix A will be singular and the diagonal form will be modified 
by a zero entry. This case, in which the procedure may be simplified further, is dis- 
cussed in Section 4. With the matrix in the modified form, (21), it is necessary to 
find the proper combination of entries of A and B that are linear in (2 -A,) when 
the determinant is formed. It is straightforward to show that the result is 

A(‘)(&) = g bjj fi ajj. 
i=l j=l 

iii 

(22) 

This is the general expression for the derivative valid at both singular and non- 
singular points. When d(l,) = 0 there will be at most one non-zero term in the sum. 
Consequently the expression can be simplified for this and other special cases. 
There is an obvious similarity between this expression and (lo), derived using 
Kublanovskaya’s approach. However, in her method, an expression for drJd/2 is 
not obtainable. Therefore one must use the ratio (l/r,)(dr,/dA), derived in (14), 
which fails at singular points. 

4. THE LOCAL DERIVATIVE WHEN A(&)=0 

A simplification of the above derived procedure is possible at points where 
A(&) = 0. When A(&) = 0 the determinant of the matrix F. is zero. Therefore it is 
not necessary to bring this matrix to a diagonal form. If the singularity is due to a 
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simple root, an approach is to modify E, and I&, the elementary matrices, such 
that A becomes 

A = E,F,E, = 

In this case the derivative will be 

‘0 0 0 ‘.. 0 ) 

0 a22 a23 ~ .. a2N 
0 0 a33 ... a3N . . . . I . . 0 0 0 : .., 

aNN 

A")(l.,) = bl, fi aj,. 
j=l 

(241 

however if the normalized eigenvectors are available the following general 
expression may be derived. E, and E, can be chosen such that A becomes 

with the Ith row and the Jth column zero. With the same operations applied to 
resulting in B, then A(‘)(&) can be expressed as 

A(%) = b, IA,,1 826) 

where /A,,/ is the determinant of the matrix A neglecting the zero row and column. 
Since Ak is an eigenvalue of D,(L), the corresponding right and left eigenvectors can 
be used to create the zero row and column. If the ei nvectors are normalized such 
that Ith entry of yk, the left eigenvector, is unity an the Jth entry of xk, the right 
eigenvectos is unity, then 

E, = 

0 . ..o... (4 

1 . ..()... 0 
. . . : 

g . . . 1 . . 
. . . : 

0 ..$.. 1 

(27a) 
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E,= 

/l 0 ... x1 ... 

‘0 0 . . . xN . . . 1 

(27b) 

where the starred Ith row in El is the complex conjugate of yk and the Jth column 
of E, is xh. If the eigenvalue is known the eigenvectors can be obtained using 
inverse iteration in O(N2) operations. However in the absence of the eigenvectors a 
row echelon form (with at least one zero row at the bottom) can be found using 
only row operations. Then in (25) E, = I and E, would contain the set of row 
operations. 

An algorithm of this sort may be used to invert Fourier transforms with matrix 
integrands. For example, consider the following initial-boundary value problem, 

da 0) = 0, dr(x, 0) = 0 (29a) 

d( - 11, t) = 0, 4,(-l, t)=O (29b) 

4,x( + 1, t) = 0, d,,,( + 1, t) = 0. (29~) 

This the governing equation for the non-uniform cantilevered beam under dis- 
tributed loading [ 10, p. 3891. The loading f(x, t) may be deterministic or random. 
E is Youngs modulus, 1((x) is the distributed moment of inertia, C is a damping 
parameter, p is the material density, A(x) is the cross-sectional area, and 4(x, t) is 
the transverse displacement of the beam. The length of the beam is 2 and 
x E [ - 1, + 11. To solve this problem, a Fourier transform is used in time, where 
the transform mates are defined as 

6(x; w) = & r’ m 4(x, t) eiWt dt (304 cc 

&x, t)=~+m$(x;co)e-W’dco. 
-‘x 

(3Ob) 

Taking the Fourier transform of (28) results in the following parameter dependent 
ordinary differential equation, 

-$ El(x) $6 - ioCq6- - 02pA(x) cj =f(x; co) (31) 
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with the boundary conditions (29a), (29b) in the frequency domain. The coefficients 
I(x) and A(x), the forcing function f(x; w), and the solution $(x; LO) are expan 
in finite Chebyshev series. For example, 

(32a) 

j32bj 

where the T,,(x) are the Chebyshev polynomials. Substituting (32) and t 
sions for d(x) and A(x) into (31) results in a matrix equation for the vector (&; 

CA,02+Alo+A21(~n)=iA31(~~n). (33) 

etails of this conversion from the differential equation to the matrix equation as 
well as further details about Chebyshev polynomiais, can be found in 17: f 11~ 
Equation (33) may be written as 

inverting D*(W) and using the inverse Fourier transform, the solution 4(x, I) is 

N-l 

where the vector dn is given by 

(36) 

where C(w) and A(W) are the cofactor matrix and determinant respectively of 
*(o). To invert the integral in (36), a large semi-circle with infinite radius is used 
the lower half plane. Therefore the integral is just the sum of the residues of the 

integrand. If the vector (fn} is taken to be entire in o (if not, the residues ue to 
{TRn> are also included in the sum), and the roots, d(ok) = 0, have unit rnulti~~~c~ty~ 
then the solution vector takes the form 

(37) 

Smce the matrix equation (33) has order N, there are M d 2N residues. In 
practical cases only the first few terms are significant due to the exponential 
weighting function. It remains to consider the form for the cofa 
However, if D*(W) is converted to the Taylor form and the E, and 
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appropriate for the singular case, are applied, the leading matrix will have the form 
of A, defined in Eq. (25). Then in the limit as o -+ ok, the cofactor matrix becomes 

where, 

Y(w!f) = 

C(wJ = 

‘0 0 . . . . 
0 0 . . . . 
0 0 

E,Y(wd 

. . . 0 

. . . 
vIJ 

. . 0 

E2 

. . . 0' 

. . . b 

. . . 0 

(38) 

(39) 

This solo entry is vlJ = jAXJI, which is defined in Eq. (26). 
This model problem has been used as a simple example to illustrate contextually 

the utility of the result derived in Section 3. In a statistical analysis of the transition 
to turbulence, Bridges and Morris [S] use the above approach to efficiently invert 
multidimensional Fourier transforms. 

5. THE LOCAL DERIVATIVE AT POINTS WHERE A(&) # 0 

At points where d(l,) # 0, the matrix D,(n) is brought to the form 

E,D,(A)E,=A+B(/Z-&)+ ... (40) 

where E, and E, are chosen such that A is the diagonal form given in (20). 
However, the determinant of D,(l) at A=,?, may be used in this case. It is the 
product of the diagonal entries in A, 

A(&) = I”i a,?. (41) 
j=l 

Factoring this out of the general expression (22) results in 

which is similar to the result found using the trace theorem (5) as well as the 
approach using the orthogonal decomposition (12) and (14). The evaluation of this 
expression requires the matrix setup, which is of O(N’), the application of the 
elementary operations, which is of O(N3), and the sum (42), which is of O(N). It is 
therefore equivalent to the operation count for the trace theorem method and the 
orthogonal decomposition method. 
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In order to obtain the second derivative of the determinant, the same efe 
operations are applied to D,(I) but it is necessary to retain the next order dn the 
Taylor expansion, 

E,D,(A) E, = A + B(A - &) + C(A - I.$ + . . (43 ) 

where C = EIF,E, and F, is defined in (16), and A is diagonal and non-singular. 
However if p = 1, the matrix F, is zero. In order to determine dt2)(,aZ) t 
bination of entries in the modified matrix (43) which results in 2d,, defined in 
Eqs. (17) and (I$), is needed. It is readily shown, by induction, that the second 
derivative of the determinant of D,(n) at ,I = Ak is 

N-l N 

~‘2)(,4) = 24(&j 2 (44) 

i=L j=i+l 

which may be contrasted with the form (7) derived using the trace theorem. The 
expression (44) is interesting in that once the elementary operations E, and Ez have 
been performed, the only additional work over that for the first derivative, is t 

ouble sum in (44) which requires less than N* operations since it is a progressive 
ouble sum. In addition if the I-matrix is linear in I, the cii are zero and the first 

sum only is required. 
Although the evaluation of the first derivative using this approach is ab 

equivalent in operation count to the methods in Section 2: the evaluation of 
second derivative requires less operations because of the direct selection of the 
matrix entries which are second order in (,I - ,I,). 

The expression (44) also has an analogue for the case ii(&) = 0. A~th~~~b a 
eneral expression may be derived, assume the matrix has been brought to a 
iagonal form with a li = 0. Then the analogue of (44) when d(ik) = 0 is 

A’yn,) = 2 fi aii N b,,bm, - hAxl) 
c11+ c 

i=2 m=2 a mm i 

‘. (45) 

Following Lancaster the expressions for the derivative of the determinant at non- 
singular points may be used to derive Newton iteration schemes for calculating the 
eigenvalues of A-matrices. 

The eigenvalues of the matrix D,(A) are given by the zeros of its determinant, 
and Newton’s method may be used on the equation d(I) = 0. If an initial estimate 
is available, then Newton’s method can be used to refine this value, 

A(&) /z =&--.-.- 
s+l A”‘(&) 

for s=O, 1,2 ,.... 

However, using Eq. (42) to define 

d 
1 
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;1 S+l=+f for s = 0, 1, 2,... 
1 

where the aii and bii are as previously defined. This algorithm is quadratically con- 
vergent to regular roots. It can be used to determine the eigenvalues of both linear 
and nonlinear matrix eigenvalue problems. 

An improvement of Newton’s method, with better convergence rates, was first 
suggested by Taylor [12]. It involves using the second derivative of the function 
whose zero is sought. For instance, expanding d(il) in a Taylor series about A = &, 

A(i) = A(&) + A(‘)(&)(;1 - 1,) + $A’“‘(&)(2 - A/J2 + . ‘. (49) 

and truncating the exansion after the first term results in the usual Newton 
algorithm, 

A(h) A-&= --. 
A”‘(&) 

However, truncating after the second term results in 

/I-&= - A(&) 
A”‘(&) + ( 1/2)4’2’(&)(A - 1,) 

(50) 

which is implicit in the unknown J, - 1,. However, the A - lk on the right-hand side 
of (51) can be approximated by (50). This substitution results in the formula first 
derived by Taylor, 

1 
’ = ” - d, - d,/d, 

for s=O, 1, 2,... 

where d, is given in (47) and 

d = 1 A’2’(U 
2 2 44) 

(53) 

and A(*)(&) is given in (44). Lancaster [2] points out that this modified Newton 
algorithm is cubically convergent to regular roots. For linear eigenvalue problems, 
the second term in (44) is zero. One startling fact is that for linear eigenvalue 
problems, the cubically convergent method requires virtually the same amount of 
work as the quadratically convergent method. The only additional work involves 
the summing of the first term in the expression (44), which is less than N2 
operations. .These two methods can be compared to the methods of Lancaster based 
on the trace theorem [2, p. 831. The quadratically convergent method here is about 
equal to Lancasters quadratically convergent method in operation count, but this 



LOCAL DERIVATIVE OF ADETERMINANT 119 

cubically convergent method may be slightly faster due to the direct evaluation of 
the second derivative using (44). 

Instead of approximating the quadratic term in (49) using (50), the quadratic for- 
mula may be used on 

d(&) + d”‘(a,)(a- a,) + &4’*‘(a,)(a - a,# = 0 

resulting in the iteration scheme, 

(54) 

2 = 2, + 
2 

-d&m 
for s=O, 1, 2,.... (55) 

This is, in fact, a variant of Mullers method (Conte [13, p. 651 has an elaboration 
of Mullers method). Conte suggests that the sign before the radical in (55) should 
be chased such that the denominator is largest in magnitude. Traub CI4, p. 21 I J 
shows that the convergence of Mullet-s method is “almost quadratic” and also 
suggests some improvements over Mullers original formulation. It is possible that 
(55) converges at a better rate than Mullers method because in Mullers meth 
derivatives are not calculated exactly; they are approximated using divided di 
ces. 

ACKNOWLEDGMENTS 

The authors would like to thank the reviewer for valuable suggestions concerning the paper; in par- 
ticular the use of the LU decomposition for Eq. (5) and [5, 6, 91. 

REFERENCES 

1. F. Ip. GANTMACKER, The Theory of Matrices, Vol. I (Chelsea, New York, 1959). 
2. P. LANCASTER, Lambda Matrices and Vibrating Systems (Permagon, Oxford, 1966). 
3. T. J. BRIDGES AND P. J. MORRIS, AIAA Paper 840437, Aerospace Sciences Meeting, Jan. 1984 

(unpublished). 
4. T. J. BRIDGES, Math. Res. Center Report 2839, 1985 (unpublished). 
5. P. LANCASTER, Int. Schr. Numer. Math. (Birkhauser), 38, 43 (1977). 
6. A. RUHE, SIAM J. Numer. Anal. 10, 674 (1973). 
7. T. J. BRIDGES AND P. J. MORRIS, J. Comput. Phys. 55, 437 (1984). 
8. T. J. BRIDGES AND P. J. MORRIS, A statistical analysis of the effect of freestream turbulence on the 

Blasius boundary layer, in preparation. 
9. V. I’d. KUBLANOVSEAYA, SIAM J. Numer. Anal. I, 532 (1970). 

10. I. ELISHAKOFF, Probabilistic Methods in the Theory of Structures (Wiley-Interscience, New York, 
1983). 

Il. L. Fox AND I. PARKER, Chebyshev Polynomials in Numerical Analysis (Oxford Univ. Press, London, 
1968). 

12. B. TAYLOR, Phiios. Trans. Royul Sot. London 30, 610 (1717). 
13. S. D. CONTE, Elemantary Numerical Analysis (McGraw-Hill, New York, 1965). 
14. J. F. TRAUB, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood ClifTs, N.J., 

1964). 


